14/06/2020

Basis Prediction Networks for Effective Burst Denoising With Large Kernels

Zhihao Xia, Federico Perazzi, Michaël Gharbi, Kalyan Sunkavalli, Ayan Chakrabarti

Keywords: burst denoising, kernel prediction, basis decomposition, deep learning, image restoration

Abstract: Bursts of images exhibit significant self-similarity across both time and space. This motivates a representation of the kernels as linear combinations of a small set of basis elements. To this end, we introduce a novel basis prediction network that, given an input burst, predicts a set of global basis kernels --- shared within the image --- and the corresponding mixing coefficients --- which are specific to individual pixels. Compared to state-of-the-art techniques that output a large tensor of per-pixel spatiotemporal kernels, our formulation substantially reduces the dimensionality of the network output. This allows us to effectively exploit comparatively larger denoising kernels, achieving both significant quality improvements (over 1dB PSNR) and faster run-times over state-of-the-art methods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers