14/06/2020

Composed Query Image Retrieval Using Locally Bounded Features

Mehrdad Hosseinzadeh, Yang Wang

Keywords: image retrieval, composed query, multi modal learning, self attention, cross modal attention

Abstract: Composed query image retrieval is a new problem where the query consists of an image together with a requested modification expressed via a textual sentence. The goal is then to retrieve the images that are generally similar to the query image, but differ according to the requested modification. Previous methods usually consider the image as a whole. In this paper, we propose a novel method that represents the image using a set of local areas in the image. The relationship between each word in the modification text and each area in the image is then explicitly established, allowing the model to accurately correlate the modification text to parts of the image. We conduct extensive experiments on three benchmark datasets. The results show that our method outperforms other state-of-the-art approaches by a considerable margin.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers