14/06/2020

Exploiting Joint Robustness to Adversarial Perturbations

Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, Jeremy Dawson, Nasser M. Nasrabadi

Keywords: adversarial defense, ensemble classification, deep neural networks, regularization, adversarial examples

Abstract: Recently, ensemble models have demonstrated empirical capabilities to alleviate the adversarial vulnerability. In this paper, we exploit first-order interactions within ensembles to formalize a reliable and practical defense. We introduce a scenario of interactions that certifiably improves the robustness according to the size of the ensemble, the diversity of the gradient directions, and the balance of the member's contribution to the robustness. We present a joint gradient phase and magnitude regularization (GPMR) as a vigorous approach to impose the desired scenario of interactions among members of the ensemble. Through extensive experiments, including gradient-based and gradient-free evaluations on several datasets and network architectures, we validate the practical effectiveness of the proposed approach compared to the previous methods. Furthermore, we demonstrate that GPMR is orthogonal to other defense strategies developed for single classifiers and their combination can further improve the robustness of ensembles.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers