14/06/2020

Episode-Based Prototype Generating Network for Zero-Shot Learning

Yunlong Yu, Zhong Ji, Jungong Han, Zhongfei Zhang

Keywords: zero-shot learning, episodic training, prototype generation, cycle-consistent network.

Abstract: We introduce a simple yet effective episode-based training framework for zero-shot learning (ZSL), where the learning system requires to recognize unseen classes given only the corresponding class semantics. During training, the model is trained within a collection of episodes, each of which is designed to simulate a zero-shot classification task. Through training multiple episodes, the model progressively accumulates ensemble experiences on predicting the mimetic unseen classes, which will generalize well on the real unseen classes. Based on this training framework, we propose a novel generative model that synthesizes visual prototypes conditioned on the class semantic prototypes. The proposed model aligns the visual-semantic interactions by formulating both the visual prototype generation and the class semantic inference into an adversarial framework paired with a parameter-economic Multi-modal Cross-Entropy Loss to capture the discriminative information. Extensive experiments on four datasets under both traditional ZSL and generalized ZSL tasks show that our model outperforms the state-of-the-art approaches by large margins.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers