14/06/2020

HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application for Probabilistic Occupancy Map Forecasting

Geunseob Oh, Jean-Sébastien Valois

Keywords: flow, invertible networks, generative models, autonomous driving, autoregressive models, density estimation

Abstract: We introduce Hyper-Conditioned Neural Autoregressive Flow (HCNAF). a powerful universal distribution approximator designed to model arbitrarily complex conditional probability density functions. HCNAF consists of a neural-net based conditional autoregressive flow (AF) and a hyper-network that can take large conditions in non-autoregressive fashion and outputs the network parameters of the AF. Like other flow models, HCNAF performs exact likelihood inference. We conduct a number of density estimation tasks on toy experiments and MNIST to demonstrate the effectiveness and attributes of HCNAF, including its generalization capability over unseen conditions and expressivity. Finally, we show that HCNAF scales up to complex high-dimensional prediction problems of the magnitude of self-driving and that HCNAF yields a state-of-the-art performance in a public self-driving dataset.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers