02/06/2020

SASOBUS: Semi-automatic Sentiment Domain Ontology Building Using Synsets

Ewelina Dera, Flavius Frasincar, Kim Schouten, Lisa Zhuang

Keywords:

Abstract: In this paper, a semi-automatic approach for building a sentiment domain ontology is proposed. Differently than other methods, this research makes use of synsets in term extraction, concept formation, and concept subsumption. Using several state-of-the-art hybrid aspect-based sentiment analysis methods like Ont + CABASC and Ont + LCR-Rot-hop on a standard dataset, the accuracies obtained using the semi-automatically built ontology as compared to the manually built one, are slightly lower (from approximately 87% to 84%). However, the user time needed for building the ontology is reduced by more than half (from 7 h to 3 h), thus showing the usefulness of this work. This is particularly useful for domains for which sentiment ontologies are not yet available.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ESWC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers