02/06/2020

Building Linked Spatio-Temporal Data from Vectorized Historical Maps

Basel Shbita, Craig A. Knoblock, Weiwei Duan, Yao-Yi Chiang, Johannes H. Uhl, Stefan Leyk

Keywords:

Abstract: Historical maps provide a rich source of information for researchers in the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as the changes in the transportation networks and the decline of wetlands. It can be labor-intensive for a scientist to analyze changes across space and time in such maps, even after they have been digitized and converted to a vector format. In this paper, we present an unsupervised approach that converts vector data of geographic features extracted from multiple historical maps into linked spatio-temporal data. The resulting graphs can be easily queried and visualized to understand the changes in specific regions over time. We evaluate our technique on railroad network data extracted from USGS historical topographic maps for several regions over multiple map sheets and demonstrate how the automatically constructed linked geospatial data enables effective querying of the changes over different time periods.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ESWC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers