12/08/2020

Using google search trends to estimate global patterns in learning

Serhat Arslan, Mo Tiwari, Chris Piech

Keywords: informaleducation, google search trends, measuring quality education, curricula patterns

Abstract: The use of the Internet for learning provides a unique and growing opportunity to revisit the task of quantifying how much people have learned about a given subject in different regions around the world. Google alone receives over 5 billion searches a day and its publicly available data provides insight into learning process that is otherwise unobservable on a global scale. In this paper we, introduce the Computer Science Literacy-Proxy Index via Search (CSLI-s), a measure that utilizes online search data to make an educated guess around trends in computer science education. This measure uses a statistical signal processing technique to compose search volumes from a spectrum of topics into a coherent score. We intentionally explore and mitigate the biases of search data and, in the process, develop CSLI-s scores that correlate with traditional, more expensive metrics of learning. We then use search-trend data to measure patterns in subject literacy across countries and over time. To the best of our knowledge, this is the first measure of learning via Internet search-trends. The Internet is becoming a standard tool for learners and, as such, we anticipate search-trend data will have growing relevance to the learning science community.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at L@S 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers