22/06/2020

An improved approximation algorithm for TSP in the half integral case

Anna R. Karlin, Nathan Klein, Shayan Oveis Gharan

Keywords: Randomized Rounding, Traveling Salesman Problem, Approximation Algorithms, Max Entropy, Strongly Rayleigh, Cactus Representation

Abstract: We design a 1.49993-approximation algorithm for the metric traveling salesperson problem (TSP) for instances in which an optimal solution to the subtour linear programming relaxation is half-integral. These instances received significant attention over the last decade due to a conjecture of Schalekamp, Williamson and van Zuylen stating that half-integral LP solutions have the largest integrality gap over all fractional solutions. So, if the conjecture of Schalekamp et al. holds true, our result shows that the integrality gap of the subtour polytope is bounded away from 3/2.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers