22/06/2020

QCSP monsters and the demise of the chen conjecture

Dmitriy Zhuk, Barnaby Martin

Keywords: constraint satisfaction, universal algebra, computational complexity, quantified constraints

Abstract: We give a surprising classification for the computational complexity of the Quantified Constraint Satisfaction Problem over a constraint language Γ, QCSP(Γ), where Γ is a finite language over 3 elements which contains all constants. In particular, such problems are either in P, NP-complete, co-NP-complete or PSpace-complete. Our classification refutes the hitherto widely-believed Chen Conjecture. Additionally, we show that already on a 4-element domain there exists a constraint language Γ such that (Γ) is DP-complete (from Boolean Hierarchy), and on a 10-element domain there exists a constraint language giving the complexity class Θ2P. Meanwhile, we prove the Chen Conjecture for finite conservative languages Γ. If the polymorphism clone of such Γ has the polynomially generated powers (PGP) property then QCSP(Γ) is in NP. Otherwise, the polymorphism clone of Γ has the exponentially generated powers (EGP) property and QCSP(Γ) is PSpace-complete.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers