22/06/2020

Concentration on the boolean hypercube via pathwise stochastic analysis

Ronen Eldan, Renan Gross

Keywords: Isoperimetric inequality, Pathwise analysis, Boolean analysis, Concentration

Abstract: We develop a new technique for proving concentration inequalities which relate between the variance and influences of Boolean functions. Using this technique, we first settle a conjecture of Talagrand, proving that ∫  ⎧ ⎨ ⎩−1,1⎫ ⎬ ⎭n√hf⎛ ⎝x⎞ ⎠dµ≥ C·⎛ ⎝f⎞ ⎠·⎛ ⎜ ⎜ ⎜ ⎝log⎛ ⎜ ⎜ ⎜ ⎝1∑i2⎛ ⎝f⎞ ⎠⎞ ⎟ ⎟ ⎟ ⎠⎞ ⎟ ⎟ ⎟ ⎠1/2  ,  where hf(x) is the number of edges at x along which f changes its value, and i(f) is the influence of the i-th coordinate. Second, we strengthen several classical inequalities concerning the influences of a Boolean function, showing that near-maximizers must have large vertex boundaries. An inequality due to Talagrand states that for a Boolean function f, (f)≤ C∑i=1ni(f)/1+log(1/i(f)). We give a lower bound for the size of the vertex boundary of functions saturating this inequality. As a corollary, we show that for sets that satisfy the edge-isoperimetric inequality or the Kahn-Kalai-Linial inequality up to a constant, a constant proportion of the mass is in the inner vertex boundary. Lastly, we improve a quantitative relation between influences and noise stability given by Keller and Kindler. Our proofs rely on techniques based on stochastic calculus, and bypass the use of hypercontractivity common to previous proofs.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at STOC 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers