11/08/2020

GRooT: Proactive verification of DNS configurations

Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Millstein, George Varghese

Keywords: DNS, Verification, Static Analysis, Formal Methods

Abstract: The Domain Name System (DNS) plays a vital role in today’s Internet but relies on complex distributed management of records. DNS misconfiguration related outages have rendered popular services like GitHub, HBO, LinkedIn, and Azure inaccessible for extended periods. This paper introduces GRoot, the first verifier that performs static analysis of DNS configuration files, enabling proactive and exhaustive checking for common DNS bugs; by contrast, existing solutions are reactive and incomplete. GRoot uses a new, fast verification algorithm based on generating and enumerating DNS query equivalence classes. GRoot symbolically executes the set of queries in each equivalence class to efficiently find (or prove the absence of) any bugs such as rewrite loops. To prove the correctness of our approach, we develop a formal semantic model of DNS resolution. Applied to the configuration files from a campus network with over a hundred thousand records, GRoot revealed 109 bugs within seconds. When applied to internal zone files consisting of over 3.5 million records from a large infrastructure service provider, GRoot revealed around 160k issues of blackholing, initiating a cleanup. Finally, on a synthetic dataset with over 65 million real records, we find GRoot can scale to networks with tens of millions of records.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers