11/08/2020

NFC+: Breaking NFC networking limits through resonance engineering

Renjie Zhao, Purui Wang, Yunfei Ma, Pengyu Zhang, Hongqiang Harry Liu, Xianshang Lin, Xinyu Zhang, Chenren Xu, Ming Zhang

Keywords: Internet of Things, RFID, Logistics Network, Magnetic Communication, NFC

Abstract: Current UHF RFID systems suffer from two long-standing problems: 1) miss-reading non-line-of-sight or misoriented tags and 2) cross-reading undesired, distant tags due to multi-path reflections. This paper proposes a novel system, NFC+, to overcome the fundamental challenges. NFC+ is a magnetic field reader, which can inventory standard NFC tagged objects with a reasonably long range and arbitrary orientation. NFC+ achieves this by leveraging physical and algorithmic techniques based on magnetic resonance engineering. We build a prototype of NFC+ and conduct extensive evaluations in a logistic network. Comparing to UHF RFID, we find that NFC+ can reduce the miss-reading rate from 23

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at SIGCOMM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers