18/11/2020

Learning dynamic context graph embedding

Chuanchang Chen, Yubo Tao, Hai Lin

Keywords:

Abstract: Graph embeddings represent nodes as low-dimensional vectors to preserve the proximity between nodes and communities of graphs for network analysis. The temporal edges (e.g., relationships, contacts, and emails) in dynamic graphs are important for graph evolution analysis, but few existing methods in graph embeddings can capture the dynamic information from temporal edges. In this study, we propose a dynamic graph embedding method to analyze the evolution patterns of dynamic graphs effectively. Our method uses diffuse context sampling to preserve the proximity between nodes, and applies dynamic context graph embeddings to train discrete-time graph embeddings in the same vector space without alignments to preserve the temporal continuity of stable nodes. We compare our method with several state-of-the-art methods for link prediction, and the experiments demonstrate that our method generally performs better at the task. Our method is further verified using a real-world dynamic graph by visualizing the evolution of its community structure at different timesteps.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers