20/07/2020

Deep learning interpretation: Flip points and homotopy methods

Roozbeh Yousefzadeh, Dianne P. O’Leary

Keywords:

Abstract: Deep learning models are complicated mathematical functions, and their interpretation remains a challenging research question. We formulate and solve optimization problems to answer questions about the models and their outputs. Specifically, we develop methods to study the decision boundaries of classification models using {\em flip points}. A flip point is any point that lies on the boundary between two output classes: e.g. for a neural network with a binary yes/no output, a flip point is any input that generates equal scores for “yes” and “no”. The flip point closest to a given input is of particular importance, and this point is the solution to a well-posed optimization problem. To compute the closest flip point, we develop a homotopy algorithm to overcome the issues of vanishing and exploding gradients and to find a feasible solution for our optimization problem. We show that computing closest flip points allows us to systematically investigate the model, identify decision boundaries, interpret and audit the model with respect to individual inputs and entire datasets, and find vulnerability against adversarial attacks. We demonstrate that flip points can help identify mistakes made by a model, improve the model’s accuracy, and reveal the most influential features for classifications.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MSML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers