20/07/2020

SchrödingerRNN: Generative modeling of raw audio as a continuously observed quantum state

Beñat Mencia Uranga, Austen Lamacraft

Keywords:

Abstract: We introduce SchrödingeRNN, a quantum-inspired generative model for raw audio. Audio data is wave-like and is sampled from a continuous signal. Although generative modeling of raw audio has made great strides lately, relational inductive biases relevant to these two characteristics are mostly absent from models explored to date. Quantum Mechanics is a natural source of probabilistic models of wave behavior. Our model takes the form of a stochastic Schrödinger equation describing the continuous time measurement of a quantum system, and is equivalent to the <em>continuous Matrix Product State</em> (cMPS) representation of wavefunctions in one dimensional many-body systems. This constitutes a deep autoregressive architecture in which the system’s state is a latent representation of the past observations. We test our model on synthetic data sets of stationary and non-stationary signals. This is the first time cMPS are used in machine learning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at MSML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers