03/08/2020

Static and Dynamic Values of Computation in MCTS

Eren Sezener, Peter Dayan

Keywords:

Abstract: Monte-Carlo Tree Search (MCTS) is one of the most-widely used methodsfor planning, and has powered many recent advances in artificialintelligence. In MCTS, one typically performs computations(i.e., simulations) to collect statistics about the possible futureconsequences of actions, and then chooses accordingly. Manypopular MCTS methods such as UCT and its variants decide whichcomputations to perform by trading-off exploration and exploitation. Inthis work, we take a more direct approach, and explicitly quantify thevalue of a computation based on its expected impact on the quality ofthe action eventually chosen. Our approach goes beyond the \emph{myopic}limitations of existing computation-value-based methods in two senses:(I) we are able to account for the impact of non-immediate (ie, future)computations (II) on non-immediate actions. We show that policies thatgreedily optimize computation values are optimal under certainassumptions and obtain results that are competitive with thestate-of-the-art.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers