03/08/2020

Testing Goodness of Fit of Conditional Density Models with Kernels

Wittawat Jitkrittum, Heishiro Kanagawa, Bernhard Schölkopf

Keywords:

Abstract: We propose two nonparametric statistical tests of goodness of fit for conditional distributions: given a conditional probability density function p(y|x) and a joint sample, decide whether the sample is drawn from p(y|x)q(x) for some density q(x). Our tests, formulated with a Stein operator, can be applied to any differentiable conditional density model, and require no knowledge of the normalizing constant. We show that 1) our tests are consistent against any fixed alternative conditional model; 2) the statistics can be estimated easily, requiring no density estimation as an intermediate step; and 3) our second test offers an interpretable test result providing insight on where the conditional model does not fit well in the domain of the covariate. We demonstrate the interpretability of our test on a task of modeling the distribution of New York City’s taxi drop-off location given a pick-up point. To our knowledge, our work is the first to propose such conditional goodness-of-fit tests that simultaneously have all these desirable properties.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers