03/08/2020

Measurement Dependence Inducing Latent Causal Models

Alex Markham, Moritz Grosse-Wentrup

Keywords:

Abstract: We consider the task of causal structure learning over measurement dependence inducing latent (MeDIL) causal models. We show that this task can be framed in terms of the graph theoretic problem of finding edge clique covers,resulting in an algorithm for returning minimal MeDIL causal models (minMCMs). This algorithm is non-parametric, requiring no assumptions about linearity or Gaussianity. Furthermore, despite rather weak assumptions aboutthe class of MeDIL causal models, we show that minimality in minMCMs implies some rather specific and interesting properties. By establishing MeDIL causal models as a semantics for edge clique covers, we also provide a starting point for future work further connecting causal structure learning to developments in graph theory and network science.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers