03/08/2020

Differentially Private Small Dataset Release Using Random Projections

Lovedeep Gondara, Ke Wang

Keywords:

Abstract: Small datasets form a significant portion of releasable data in high sensitivity domains such as healthcare. But, providing differential privacy for small dataset release is a hard task, where current state-of-the-art methods suffer from severe utility loss. As a solution, we propose DPRP (Differentially Private Data Release via Random Projections), a reconstruction based approach for releasing differentially private small datasets. DPRP has several key advantages over the state-of-the-art. Using seven diverse real-life datasets, we show that DPRP outperforms the current state-of-the-art on a variety of tasks, under varying conditions, and for all privacy budgets.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers