03/08/2020

Complex Markov Logic Networks: Expressivity and Liftability

Ondrej Kuzelka

Keywords:

Abstract: We study expressivity of Markov logic networks (MLNs). We introduce complex MLNs, which use complex-valued weights, and show that, unlike standard MLNs with real-valued weights, complex MLNs are"fully expressive". We then observe that discrete Fourier transform can be computed using weighted first order model counting (WFOMC) with complex weights and use this observation to design an algorithm for computing "relational marginal polytopes" which needs substantially less calls to a WFOMC oracle than an existing recent algorithm.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers