03/08/2020

Dueling Posterior Sampling for Preference-Based Reinforcement Learning

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, Joel Burdick

Keywords:

Abstract: In preference-based reinforcement learning (RL), an agent interacts with the environment while receiving preferences instead of absolute feedback. While there is increasing research activity in preference-based RL, the design of formal frameworks that admit tractable theoretical analysis remains an open challenge. Building upon ideas from preference-based bandit learning and posterior sampling in RL, we present DUELING POSTERIOR SAMPLING (DPS), which employs preference-based posterior sampling to learn both the system dynamics and the underlying utility function that governs the preference feedback. As preference feedback is provided on trajectories rather than individual state-action pairs, we develop a Bayesian approach for the credit assignment problem, translating preferences to a posterior distribution over state-action reward models. We prove an asymptotic Bayesian no-regret rate for DPS with a Bayesian linear regression credit assignment model. This is the first regret guarantee for preference-based RL to our knowledge. We also discuss possible avenues for extending the proof methodology to other credit assignment models. Finally, we evaluate the approach empirically, showing competitive performance against existing baselines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers