03/08/2020

Automated Dependence Plots

David Inouye, Liu Leqi, Joon Sik Kim, Bryon Aragam, Pradeep Ravikumar

Keywords:

Abstract: In practical applications of machine learning, it is necessary to look beyond standard metrics such as test accuracy in order to validate various qualitative properties of a model. Partial dependence plots (PDP), including instance-specific PDPs (i.e., ICE plots), have been widely used as a visual tool to understand or validate a model. Yet, current PDPs suffer from two main drawbacks: (1) a user must manually sort or select interesting plots, and (2) PDPs are usually limited to plots along a single feature. To address these drawbacks, we formalize a method for automating the selection of interesting PDPs and extend PDPs beyond showing single features to show the model response along arbitrary directions, for example in raw feature space or a latent space arising from some generative model. We demonstrate the usefulness of our automated dependence plots (ADP) across multiple use-cases and datasets including model selection, bias detection, understanding out-of-sample behavior, and exploring the latent space of a generative model. The code is available at <https://github.com/davidinouye/adp>.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers