05/12/2020

Comparing probabilistic, distributional and transformer-based models on logical metonymy interpretation

Giulia Rambelli, Emmanuele Chersoni, Alessandro Lenci, Philippe Blache, Chu-Ren Huang

Keywords:

Abstract: In linguistics and cognitive science, Logical metonymies are defined as type clashes between an event-selecting verb and an entity-denoting noun (e.g. The editor finished the article), which are typically interpreted by inferring a hidden event (e.g. reading) on the basis of contextual cues. This paper tackles the problem of logical metonymy interpretation, that is, the retrieval of the covert event via computational methods. We compare different types of models, including the probabilistic and the distributional ones previously introduced in the literature on the topic. For the first time, we also tested on this task some of the recent Transformer-based models, such as BERT, RoBERTa, XLNet, and GPT-2. Our results show a complex scenario, in which the best Transformer-based models and some traditional distributional models perform very similarly. However, the low performance on some of the testing datasets suggests that logical metonymy is still a challenging phenomenon for computational modeling.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers