05/12/2020

Energy-based self-attentive learning of abstractive communities for spoken language understanding

Guokan Shang, Antoine Tixier, Michalis Vazirgiannis, Jean-Pierre Lorré

Keywords:

Abstract: Abstractive community detection is an important spoken language understanding task, whose goal is to group utterances in a conversation according to whether they can be jointly summarized by a common abstractive sentence. This paper provides a novel approach to this task. We first introduce a neural contextual utterance encoder featuring three types of self-attention mechanisms. We then train it using the siamese and triplet energy-based meta-architectures. Experiments on the AMI corpus show that our system outperforms multiple energy-based and non-energy based baselines from the state-of-the-art. Code and data are publicly available.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AACL 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers