01/07/2020

Joint learning of constraint weights and gradient inputs in Gradient Symbolic Computation with constrained optimization

Max Nelson

Keywords:

Abstract: This paper proposes a method for the joint optimization of constraint weights and symbol activations within the Gradient Symbolic Computation (GSC) framework. The set of grammars representable in GSC is proven to be a subset of those representable with lexically-scaled faithfulness constraints. This fact is then used to recast the problem of learning constraint weights and symbol activations in GSC as a quadratically-constrained version of learning lexically-scaled faithfulness grammars. This results in an optimization problem that can be solved using Sequential Quadratic Programming.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ACL Workshops virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers