26/10/2020

Hierarchical Graph Traversal for Aggregate k Nearest Neighbors Search in Road Networks

Tenindra Abeywickrama, Muhammad Aamir Cheema, Sabine Storandt

Keywords: k Nearest Neighbors, Aggregate k Nearest Neighbors, Group k Nearest Neighbors, Multi-agent Nearest Neighbors

Abstract: Location-based services heavily rely on efficient methods that search relevant points-of-interest (POIs) close to a given location. A k nearest neighbors (kNN) query is one such example that finds k closest POIs from an agent's location. While most existing techniques focus on finding nearby POIs for a single agent, many applications require POIs that are close to multiple agents. In this paper, we study a natural extension of the kNN query for multiple agents, namely, the Aggregate k Nearest Neighbors (AkNN) query. An AkNN query retrieves k POIs with the smallest aggregate distances where the aggregate distance of a POI is obtained by aggregating its distances from the multiple agents (e.g., sum of its distances from each agent). Existing search heuristics are designed for a single agent and do not work well for multiple agents. We propose a novel data structure COLT (Compacted Object-Landmark Tree) to address this gap by enabling efficient hierarchical graph traversal. We then utilize COLT for a wide range of aggregate functions to efficiently answer AkNN queries. In our experiments on real-world and synthetic data sets, our techniques significantly improve query performance, typically outperforming existing approaches by more than an order of magnitude on almost all settings.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICAPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers