07/06/2020

Gravity of Location-Based Service: Analyzing the Effects for Mobility Pattern and Location Prediction

Keiichi Ochiai, Yusuke Fukazawa, Wataru Yamada, Hiroyuki Manabe, Yutaka Matsuo

Keywords: behaviors, human mobility, humans, influences, large_scale, locations, predictions, services

Abstract: Predicting user location is one of the most important topics in data mining. Although human mobility is reasonably predictable for frequently visited places, novel location prediction is much more difficult. However, location-based services (LBSs) can influence users' choice of destination and can be exploited to more accurately predict user location even for new locations. In this study, we assessed the behavior difference for specific LBS users and non-users by using large-scale check-in data. We found a remarkable difference between specific LBS users and non-users (e.g., check-in locations) that had previously not been revealed. Then, we proposed a location prediction method exploiting the characteristics of check-in locations and analyzed how specific LBS usage influences location predictability. We assumed that users who use the same LBS tend to visit similar locations. The results showed that the novel location predictability of specific LBS users is up to 43.9% higher than that of non-users.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICWSM 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers