16/11/2020

Statistical Power and Translationese in Machine Translation Evaluation

Yvette Graham, Barry Haddow, Philipp Koehn

Keywords: machine evaluation, human-parity mt, human translation, significance tests

Abstract: The term translationese has been used to describe features of translated text, and in this paper, we provide detailed analysis of potential adverse effects of translationese on machine translation evaluation. Our analysis shows differences in conclusions drawn from evaluations that include translationese in test data compared to experiments that tested only with text originally composed in that language. For this reason we recommend that reverse-created test data be omitted from future machine translation test sets. In addition, we provide a re-evaluation of a past machine translation evaluation claiming human-parity of MT. One important issue not previously considered is statistical power of significance tests applied to comparison of human and machine translation. Since the very aim of past evaluations was investigation of ties between human and MT systems, power analysis is of particular importance, to avoid, for example, claims of human parity simply corresponding to Type II error resulting from the application of a low powered test. We provide detailed analysis of tests used in such evaluations to provide an indication of a suitable minimum sample size for future studies.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers