16/11/2020

Towards Medical Machine Reading Comprehension with Structural Knowledge and Plain Text

Dongfang Li, Baotian Hu, Qingcai Chen, Weihua Peng, Anqi Wang

Keywords: national examination, medical examination, large-scale models, reading model

Abstract: Machine reading comprehension (MRC) has achieved significant progress on the open domain in recent years, mainly due to large-scale pre-trained language models. However, it performs much worse in specific domains such as the medical field due to the lack of extensive training data and professional structural knowledge neglect. As an effort, we first collect a large scale medical multi-choice question dataset (more than 21k instances) for the National Licensed Pharmacist Examination in China. It is a challenging medical examination with a passing rate of less than 14.2% in 2018. Then we propose a novel reading comprehension model KMQA, which can fully exploit the structural medical knowledge (i.e., medical knowledge graph) and the reference medical plain text (i.e., text snippets retrieved from reference books). The experimental results indicate that the KMQA outperforms existing competitive models with a large margin and passes the exam with 61.8% accuracy rate on the test set.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers