16/11/2020

Semantic Role Labeling as Syntactic Dependency Parsing

Tianze Shi, Igor Malioutov, Ozan Irsoy

Keywords: span-based labeling, syntactic parsing, semantic labeling, conversion scheme

Abstract: We reduce the task of (span-based) PropBank-style semantic role labeling (SRL) to syntactic dependency parsing. Our approach is motivated by our empirical analysis that shows three common syntactic patterns account for over 98% of the SRL annotations for both English and Chinese data. Based on this observation, we present a conversion scheme that packs SRL annotations into dependency tree representations through joint labels that permit highly accurate recovery back to the original format. This representation allows us to train statistical dependency parsers to tackle SRL and achieve competitive performance with the current state of the art. Our findings show the promise of syntactic dependency trees in encoding semantic role relations within their syntactic domain of locality, and point to potential further integration of syntactic methods into semantic role labeling in the future.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers