16/11/2020

Sparse Transcription

Steven Bird

Keywords: transcription bottleneck, automatic recognition, machine translation, word-level transcription

Abstract: The transcription bottleneck is often cited as a major obstacle for efforts to document the world’s endangered languages and supply them with language technologies. One solution is to extend methods from automatic speech recognition and machine translation, and recruit linguists to provide narrow phonetic transcriptions and sentence-aligned translations. However, I believe that these approaches are not a good fit with the available data and skills, or with long-established practices that are essentially word based. In seeking a more effective approach, I consider a century of transcription practice and a wide range of computational approaches, before proposing a computational model based on spoken term detection which I call “sparse transcription.” This represents a shift away from current assumptions that we transcribe phones, transcribe fully, and transcribe first. Instead, sparse transcription combines the older practice of word-level transcription with interpretive, iterative, and interactive processes which are amenable to wider participation and which open the way to new methods for processing oral languages.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers