16/11/2020

Deep Weighted MaxSAT for Aspect-based Opinion Extraction

Meixi Wu, Wenya Wang, Sinno Jialin Pan

Keywords: nlp tasks, training process, logic programs, satisfiability problem

Abstract: Though deep learning has achieved significant success in various NLP tasks, most deep learning models lack the capability of encoding explicit domain knowledge to model complex causal relationships among different types of variables. On the other hand, logic rules offer a compact expression to represent the causal relationships to guide the training process. Logic programs can be cast as a satisfiability problem which aims to find truth assignments to logic variables by maximizing the number of satisfiable clauses (MaxSAT). We adopt the MaxSAT semantics to model logic inference process and smoothly incorporate a weighted version of MaxSAT that connects deep neural networks and a graphical model in a joint framework. The joint model feeds deep learning outputs to a weighted MaxSAT layer to rectify the erroneous predictions and can be trained via end-to-end gradient descent. Our proposed model associates the benefits of high-level feature learning, knowledge reasoning, and structured learning with observable performance gain for the task of aspect-based opinion extraction.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers