16/11/2020

F2-Softmax: Diversifying Neural Text Generation via Frequency Factorized Softmax

Byung-Ju Choi, Jimin Hong, David Park, Sang Wan Lee

Keywords: neural generation, sub-optimal generation, learning model, mefmax

Abstract: Despite recent advances in neural text generation, encoding the rich diversity in human language remains elusive. We argue that the sub-optimal text generation is mainly attributable to the imbalanced token distribution, which particularly misdirects the learning model when trained with the maximum-likelihood objective. As a simple yet effective remedy, we propose two novel methods, F^2-Softmax and MefMax, for a balanced training even with the skewed frequency distribution. MefMax assigns tokens uniquely to frequency classes, trying to group tokens with similar frequencies and equalize frequency mass between the classes. F^2-Softmax then decomposes a probability distribution of the target token into a product of two conditional probabilities of (1) frequency class, and (2) token from the target frequency class. Models learn more uniform probability distributions because they are confined to subsets of vocabularies. Significant performance gains on seven relevant metrics suggest the supremacy of our approach in improving not only the diversity but also the quality of generated texts.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers