16/11/2020

Incorporating a Local Translation Mechanism into Non-autoregressive Translation

Xiang Kong, Zhisong Zhang, Eduard Hovy

Keywords: translation tasks, local mechanism, non-autoregressive models, merging algorithm

Abstract: In this work, we introduce a novel local autoregressive translation (LAT) mechanism into non-autoregressive translation (NAT) models so as to capture local dependencies among target outputs. Specifically, for each target decoding position, instead of only one token, we predict a short sequence of tokens in an autoregressive way. We further design an efficient merging algorithm to align and merge the output pieces into one final output sequence. We integrate LAT into the conditional masked language model (CMLM) (Ghazvininejad et al.,2019) and similarly adopt iterative decoding. Empirical results on five translation tasks show that compared with CMLM, our method achieves comparable or better performance with fewer decoding iterations, bringing a 2.5x speedup. Further analysis indicates that our method reduces repeated translations and performs better at longer sentences. Our code will be released to the public.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers