16/11/2020

Slot Attention with Value Normalization for Multi-Domain Dialogue State Tracking

Yexiang Wang, Yi Guo, Siqi Zhu

Keywords: dst, sa, annotation span, multiwoz

Abstract: Incompleteness of domain ontology and unavailability of some values are two inevitable problems of dialogue state tracking (DST). Existing approaches generally fall into two extremes: choosing models without ontology or embedding ontology in models leading to over-dependence. In this paper, we propose a new architecture to cleverly exploit ontology, which consists of Slot Attention (SA) and Value Normalization (VN), referred to as SAVN. Moreover, we supplement the annotation of supporting span for MultiWOZ 2.1, which is the shortest span in utterances to support the labeled value. SA shares knowledge between slots and utterances and only needs a simple structure to predict the supporting span. VN is designed specifically for the use of ontology, which can convert supporting spans to the values. Empirical results demonstrate that SAVN achieves the state-of-the-art joint accuracy of 54.52% on MultiWOZ 2.0 and 54.86% on MultiWOZ 2.1. Besides, we evaluate VN with incomplete ontology. The results show that even if only 30% ontology is used, VN can also contribute to our model.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EMNLP 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers