06/12/2020

Neural Networks Learning and Memorization with (almost) no Over-Parameterization

Amit Daniely

Keywords:

Abstract: Many results in recent years established polynomial time learnability of various models via neural networks algorithms (e.g. \cite{andoni2014learning, daniely2016toward, daniely2017sgd, cao2019generalization, ziwei2019polylogarithmic, zou2019improved, ma2019comparative, du2018gradient, arora2019fine, song2019quadratic, oymak2019towards, ge2019mildly, brutzkus2018sgd}). However, unless the model is linear separable~\cite{brutzkus2018sgd}, or the activation is a polynomial~\cite{ge2019mildly}, these results require very large networks -- much more than what is needed for the mere existence of a good predictor. In this paper we prove that SGD on depth two neural networks can memorize samples, learn polynomials with bounded weights, and learn certain kernel spaces, with {\em near optimal} network size, sample complexity, and runtime. In particular, we show that SGD on depth two network with $\tilde{O}\left(\frac{m}{d}\right)$ hidden neurons (and hence $\tilde{O}(m)$ parameters) can memorize $m$ random labeled points in $\sphere^{d-1}$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers