06/12/2020

f-Divergence Variational Inference

Neng Wan, Dapeng Li, NAIRA HOVAKIMYAN

Keywords:

Abstract: This paper introduces the f-divergence variational inference (f-VI) that generalizes variational inference to all f-divergences. Initiated from minimizing a crafty surrogate f-divergence that shares the statistical consistency with the f-divergence, the f-VI framework not only unifies a number of existing VI methods, e.g. Kullback–Leibler VI, Renyi's alpha-VI, and chi-VI, but offers a standardized toolkit for VI subject to arbitrary divergences from f-divergence family. A general f-variational bound is derived and provides a sandwich estimate of marginal likelihood (or evidence). The development of the f-VI unfolds with a stochastic optimization scheme that utilizes the reparameterization trick, importance weighting and Monte Carlo approximation; a mean-field approximation scheme that generalizes the well-known coordinate ascent variational inference (CAVI) is also proposed for f-VI. Empirical examples, including variational autoencoders and Bayesian neural networks, are provided to demonstrate the effectiveness and the wide applicability of f-VI.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers