06/12/2020

Learning to Prove Theorems by Learning to Generate Theorems

Mingzhe Wang, Jia Deng

Keywords:

Abstract: We consider the task of automated theorem proving, a key AI task. Deep learning has shown promise for training theorem provers, but there are limited human-written theorems and proofs available for supervised learning. To address this limitation, we propose to learn a neural generator that automatically synthesizes theorems and proofs for the purpose of training a theorem prover. Experiments on real-world tasks demonstrate that synthetic data from our approach improves the theorem prover and advances the state of the art of automated theorem proving in Metamath.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers